Etude d'opportunité Géothermie

Commune d'Aigondigné

Département des Deux-Sèvres Place de la Mairie - Mougon 79370 AIGONDIGNE

Téléphone: 05 49 05 90 19

Courriel: mairie@aigondigne.fr

octobre-23

Étude réalisée par :

Centre Régional des Énergies Renouvelables 8, rue Jacques Cartier - Z.A. de Baussais 79260 LA CRÈCHE

Correspondant: Edouard CHESNEL

Téléphone : 05 49 08 24 24 Fax : 05 49 08 24 25

Courriel: edouard.chesnel@crer.info

Avec le soutien de :

Sommaire

1 - Synthèse de l'étude	3
2 - Conditions de réussite	5
3 - Contexte général de l'opération	7
4 - Solution de référence	9
5 - Potentiel géothermique	13
6 - Dimensionnement du système	15
7 - Bilans thermiques	21
8 - Bilan économique	22
Annexe 1 - Le contexte du marché géothermique	27
Annexe 2 - Aspects techniques	28
Annexe 3 - Aspects économiques	33
Annexe 4 - Règlement aides financières	34

1 - Synthèse de l'étude

1.1 Objet

La Commune d'Aigondigné a sollicité l'assistance du Centre Régional des Énergies Renouvelables afin d'évaluer la faisabilité d'une installation géothermique avec chaussée thermoactive pour alimenter les bâtiments de la Mairie/Salle des fêtes et de l'école maternelle. Le projet s'inscrit dans le cadre d'une réfection des places et voies de circulation autour des bâtiments. L'installation de géothermie devra assurer les besoins de chauffage des bâtiments. Le niveau d'isolation des bâtiments est de niveau RT2000. Les besoins d'eau chaude sanitaire et de rafraichissement n'ont pas été pris en compte dans l'étude.

L'étude d'opportunité présentée, réalisée avec le soutien de l'Ademe et de la Région Nouvelle Aquitaine, vise à fixer **les enjeux techniques, financiers et environnementaux** de projets géothermiques.

L'étude préalable géothermie est un outil d'aide à la décision, qui est conduite de façon à :

- vérifier la faisabilité technique du projet,
- proposer des solutions techniques adaptées au contexte local,
- évaluer les enjeux thermiques du projet,
- évaluer les aspects financiers.

L'étude a été réalisée sur le principe de la technologie de géothermie sur sondes géothermiques verticales avec chaussée thermoactive associée à une boucle d'eau tempérée géothermique (BETG) et a été comparée à une solution de référence (chaudière gaz à condensation).

1.2 Résumé - Conclusion

L'étude de potentiel a permis de montrer l'intérêt, sur les plans environnementaux et économiques, de la mise en œuvre d'un système géothermique sur sondes géothermiques verticales et chaussée thermoactive sur le site concerné pour la production de chauffage.

Afin d'optimiser la performance des pompes à chaleur (PAC) géothermique sur chacun des bâtiments et à leur propres rythmes de rénovation énergétique, une BETG a été prévue dans l'étude. La rénovation énergétique des bâtiments et la mise en œuvre d'émetteurs basse température permettrait d'optimiser la rentabilité du système. A ce stade, des chaudières gaz à condensation en relève ont été conservées, ce qui permet

- d'une part de permettre un sous-dimensionnement du système géothermique mieux adapté aux bâtiments lorsqu'ils seront rénovés et de réduire ainsi les couts d'investissement
- d'autre part d'assurer un complément de chauffage en cas de froid important.

Une étude de faisabilité à mener par un bureau d'étude hydrogéologique associé à un bureau d'étude fluide permettra de préciser la ressource et les coûts prévisionnels.

Les résultats économiques actualisés (prenant compte de l'évolution du coût de l'énergie, des charges et de l'emprunt) permettent d'envisager une rentabilité de l'installation par rapport à une solution de référence en considérant un soutien apporté dans le cadre du Fonds Chaleur de l'Ademe.

Les tableaux ci-dessous résument les principaux résultats de l'étude et listent les avantages et contraintes de chacune des solutions.

Récapitulatif des solutions étudiées

Technologie	Sondes géothermiques verticales et chaussée	
	thermoactive	
Chauffage	Oui	
ECS	Non	
Refroidissement	Non	
Economie d'énergie annuelle	146 180 kWhef/an	
Charges d'investissement aides déduites	246 980 €	
Aides potentielles (fonds chaleur)	155 029 €	
Economie annuelle charges déduites	9 871 €/an	
Economie globale actualisée sur 15 ans	-2 492 €	
Economie globale actualisée sur 30 ans	143 355 €	
Bilan écologique Economie de CO ₂	38 125 kg/an	
Principaux avantages	- Zone règlementaire verte - Aspect environnemental - Réduction des dépenses de fonctionnement - Rentabilité sur le moyen terme - Intégration de la chaussée thermoactive dans le projet de rénovation des routes et places - optimisation des performances sur chaque bâtiment en fonction de leur état de rénovation grâce à la BETG	
Principales contraintes	 Isolation thermique des bâtiments à améliorer pour optimiser les performances Des émetteurs basse température permettrait d'optimiser la performance du système L'usage d'un rafraichissement par geocooling permettrait d'améliorer la rentabilité Etude de faisabilité à réaliser par BE hydrogéologique et fluides avec qualification OPQIBI 10.07 et 20.13 	
Avis du CRER	Favorable	

2 - Conditions de réussite

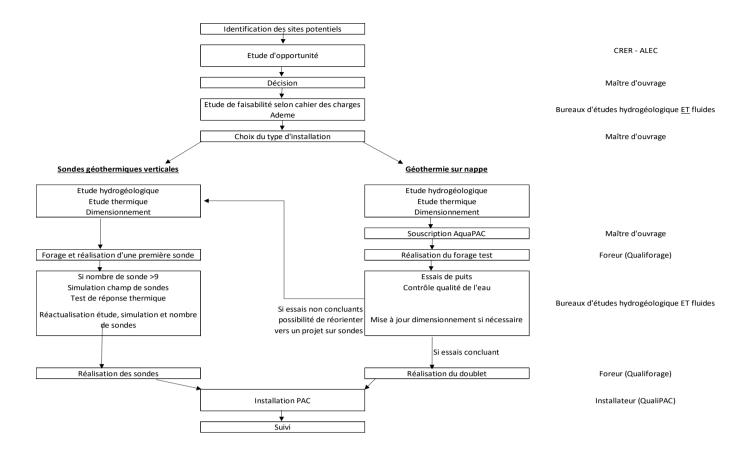
2.1 Critères de réussite d'un projet de géothermie

Afin de s'assurer de la faisabilité technique d'un projet dès le stade de l'étude préalable, certaines conditions doivent être vérifiées. Nous rappelons ici les principaux critères favorisant un projet de géothermie.

Critères bâtiment :

- Système d'émissions de chaleur par eau basse température pour le chauffage de préférence
- Bâtiments neufs ou bien isolés
- Emplacement disponible pour la création d'un local technique
- Besoin de rafraîchissement estival

Critères souterrains :


- Terrain disponible et accessible aux engins pour la réalisation de forages
- Localisation en zone verte ou orange sur les cartes des zones d'aléas du sous-sol
- Bonne conductivité thermique du sous-sol (pour les sondes géothermiques verticales)
- Présence de nappe souterraine avec débit et température suffisants au niveau du site d'implantation (géothermie sur nappe)

2.2 Les étapes d'un projet de géothermie

Les différentes phases d'un tel projet sont les suivantes:

- Phase d'évaluation du potentiel
- Phase de développement du projet
- Phase de réalisation
- Phase de production
- Fin de vie

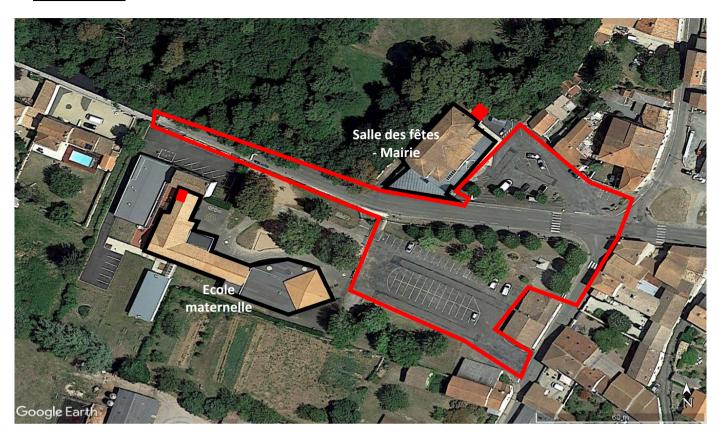
La chronologie présentée ci-dessous détaille les objectifs de ces différentes phases de vie et présente les différents acteurs en jeu.

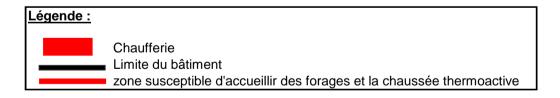
3 - Contexte général de l'opération

3.1 Informations générales

Maître d'ouvrage : Mairie d'Aigondigné Référent : Patrick Trochon Fonction : Adjoint au Maire

3.2 Périmètre concerné par l'opération


Site concerné :	Mairie - Salle des fête	es	
	Ecole		
Adresse du site :	Place de la Mairie - M	lougon - 79370 Aigondigné	
Usage :	Administratif		
	Culturel		
	Enseignement		
Année de construction /	-		
réhabilitation :			
Surface chauffée :	Mairie	210 m²	
	Salle des fêtes	400 m ²	
	Ecole	840 m²	
	Total	1 450 m²	


3.3 Localisation des sites potentiels

Plan de situation

Plan de masse

3.4 Station météo de référence

Nom de la station	Niort
Zone Climatique	H2
Département	79
Température extérieure de base	-7 °C
Altitude	89 m
Température extérieure de base corrigée	-7 °C
Degrés-jour (base 18°C)	1 853 °C.j
Nombre de jours de chauffe	232 j/an

4 - Solution de référence

4.1 Besoins thermiques

Identification des besoins thermiques

- Chauffage des locaux

- Rafraichissement

- Eau Chaude Sanitaire

Non

Méthode de calcul

- Estimation des besoins

- Analyse des factures

Les besoins thermiques sont issus des pertes d'énergie par l'enveloppe du bâtiment (murs, combles) et par les entrées d'air extérieur (système de ventilation, infiltrations d'air). Ces besoins sont entièrement indépendants du système de production de chaleur.

Les besoins thermiques d'un bâtiment dépendent de différents paramètres :

- le volume à chauffer.
- l'isolation des murs, du sol et des combles (type, épaisseur, âge et mise en œuvre du ou des matériau(x) isolant(s)).
 - la température souhaitée,
 - les menuiseries (étanchéité et vitrage),
 - le système de ventilation mécanique (simple flux, hygro réglable, double flux, puits canadien),
 - les périodes d'occupation.

Données relatives au chauffage des locaux

Commentaires du CRER

Il a été considéré dans la solution de référence un niveau d'isolation thermique des bâtiments au niveau de la RT2000. Il a été pris en compte un coefficient de déperditions thermiques globales G de 0,8 W/m3.°C. On notera que l'isolation des bâtiments n'est pas optimisé. Une meilleure isolation permettrait de réduire les déperditions thermiques et d'améliorer les performance d'une pompe à chaleur géothermique.

Il a également été pris en compte un réduit de la température de chauffage la nuit et des périodes en mise hors gel pour l'école et la salle des fêtes lorsque les bâtiments ne sont pas occupés.

<u>Mairie</u>

Surface totale : 221 m² Surface chauffée : 210 m² Volume total : 551 m³ Volume chauffé : 525 m³

Déperditions thermiques globales : Coefficient G : 1,0 W/m³.°C

Occupation moyenne du lieu :

Température intérieure	19°C	17°C			
DJU correspondants	2 085°C.j	1 621°C.j			
Périodes d'occupation	17 h/j	7 h/j			
Jours par saison de chauffe	232 j/an	232 j/an			
			Coefficient d	'intermittence	1,05

Salle des fêtes

Déperditions thermiques globales : Coefficient G : 1,0 W/m³.°C

Occupation moyenne du lieu :

Température intérieure	19°C	17°C	12°C		
DJU correspondants	2 085°C.j	1 621°C.j	663°C.j		
Périodes d'occupation	16 h/j	8 h/j	24 h/j		
Jours par saison de chauffe	167 j/an	167 j/an	65 j/an		
				Coefficient d'intermittence	0,85

Ecole

Surface totale : 882 m 2 Surface chauffée : 840 m 2 Volume total : 2 205 m 3 Volume chauffé : 2 100 m 3

Déperditions thermiques globales : Coefficient G : 1,0 W/m³.°C

Occupation movenne du lieu :

Température intérieure	21°C	19°C	12°C		
DJU correspondants	2 549°C.j	2 085°C.j	663°C.j		
Périodes d'occupation	16 h/j	8 h/j	24 h/j		
Jours par saison de chauffe	122 j/an	122 j/an	110 j/an		
			=	Coefficient d'intermittence	0,85

Besoins de chauffage : Mairie 24 518 kWh/an

Salle des fêtes 68 050 kWh/an Ecole 79 391 kWh/an

Besoins de chauffage : TOTAL 171 958 kWh/an

4.2 Emetteurs de chaleur

Il a été considéré dans la solution de référence une émission de chaleur par radiateurs acier

4.3 Puissance calorifique

La puissance de génération de chaleur minimale des appareils de chauffe correspond à la puissance nécessaire pour chauffer les locaux à la température de base. Une marge de 20% doit être prise en compte afin de pouvoir monter rapidement les locaux en température, notamment dans des conditions de froid important.

La puissance nécessaire dépendra de plusieurs paramètres et notamment :

- des besoins de chauffage
- du rendement de distribution (prenant en compte les pertes de chaleur dans le réseau)
- du rendement d'émission

Les hypothèses suivantes ont été prises en compte pour le calcul de la puissance de génération. Les puissances mentionnées de manière indicative prennent en compte les travaux de rénovation énergétique mentionné plus haut et devront être affinée par une étude thermique règlementaire.

Rendement distribution	95%
Rendement émission	95%
Mairie	19 kW
Salle des fêtes	62 kW
Ecole	78 kW
Puissance nécessaire totale	160 kW

4.4 Système de chauffage de référence

Il est pris en compte dans cette étude comme solution de référence deux chaudières gaz à condensation : l'une pour l'ensemble mairie - salle des fêtes et l'autre pour l'école maternelle.

Caractéristiques énergétiques :

	Mairie	Salle des fêtes	Ecole
Rendement génération	95%	95%	95%
Rendement distribution	95%	95%	100%
Rendement émission	95%	95%	100%
Rendement régulation	95%	95%	100%
Rendement global estimé	81%	81%	95%

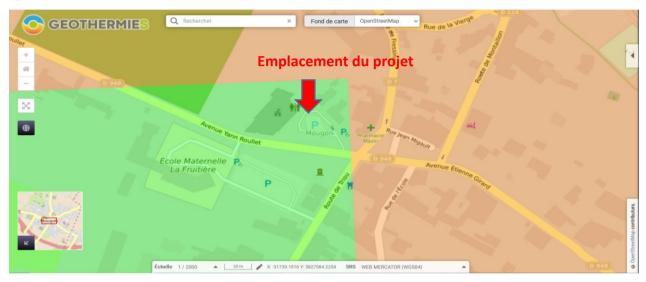
Consommation énergie finale 211 120 kWh

4.5 Système de production d'ECS de référence

La production d'eau chaude sanitaire n'a pas été prise en compte dans cette étude.

4.6 Système de rafraichissement de référence

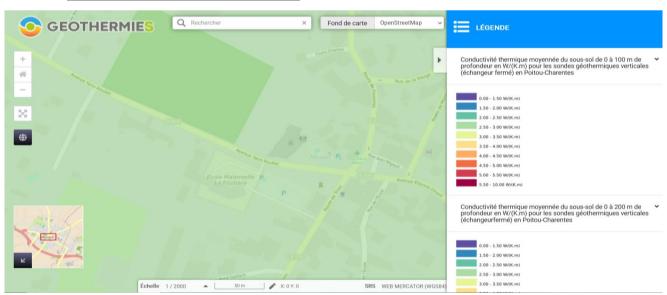
Le rafraichissement n'a pas été pris en compte dans cette étude.


5 - Potentiel géothermique

5.1 Géothermie sur sondes verticales

5.1.1 Contexte règlementaire

Les projets géothermiques sur sondes géothermiques verticales sont considérés de "minime importance" s'ils respectent les conditions suivantes :


- profondeur d'installation supérieure à 10 m et jusqu'à 200 m
- puissance soutirée du sous-sol inférieure à 500 kW
- localisation en zone verte ou orange sur les cartes des zones d'aléas du sous-sol

Zonage règlementaire géothermie pour système sur sondes verticales

Le projet est situé en zone verte de 0 à 200m de profondeur. Dans les zones vertes, les projets de GMI sont autorisés sous simple déclaration.

5.1.2 Caractéristiques géologiques du site

source BRGM: geothermies.fr

Selon les données cartographiques issues du site geothermies.fr, la conductivité thermique moyenne sur 100 m est évaluée à 2,83 W/mK et à 2,91 W/m.K sur 200 m, ce qui constitue une valeur intéressante.

5.1.3 Potentiel géothermique sur sondes

On cherche à déterminer la longueur maximale de sondes sur le site pour déterminer la puissance maximale extractible. Dans le cadre de la géothermie de minime importance, la longueur maximale de chaque sonde est de 200m. Afin d'éviter au mieux les interactions sur le prélèvement de l'énergie géothermique, elles doivent être écartées au minimum de 10m l'une de l'autre. De manière générale, on veillera à respecter les distances suivantes avec les différentes obstructions :

Obstructions	Distance minimale (m)
Arbres	5
Réseaux enterrés non hydraulique	1,5
Fondations, puits, fosses septiques, évacuations,	3
Limite de propriété	5

Pour une installation sur sondes géothermiques verticales sans chaussée thermoactive, on peut considérer en première approche un ratio de puissance extractible de 50W/ml de sonde. Cette valeur est modulée en fonction de l'énergie prélevée.

Dans le cas de l'utilisation d'une chaussée thermoactive, celle-ci apporte de l'énergie complémentaire au champ de sondes. Cela permet de recharger le sous-sol en été pour une utilisation optimale en hiver. La puissance extractible par mètre linéaire de sondes s'en voit donc améliorée. On peut considérer en première approche qu'on économise 1,5 ml de sondes par m² de chaussée thermoactive.

6 - Dimensionnement du système

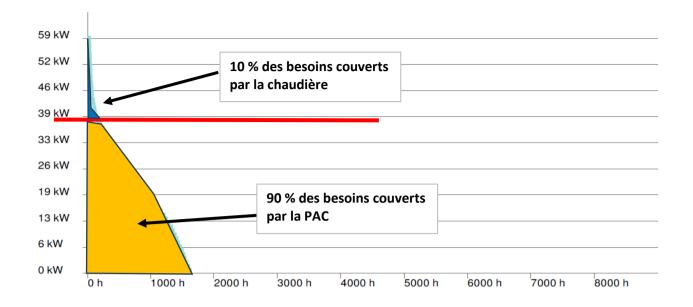
6.1 Emetteurs de chaleur

Il a été pris en compte dans cette étude une émission par radiateurs et par CTA pour la salle des fêtes (grande salle). Un désembouage du circuit de distribution est également fortement recommandé.

Ces émetteurs, pouvant nécessiter une alimentation en eau à haute température, ne sont pas optimisés pour des pompes à chaleur (PAC) géothermiques. Leur remplacement par des radiateurs et CTA basse température permettrait d'optimiser le coefficient de performance (COP) de la PAC et réduire les consommations.

6.2 Dimensionnement du générateur de chaleur

Les besoins de chaleur d'un bâtiment ne sont pas constants tout au long de l'année. Plus les conditions extérieures sont défavorables, plus le besoin de chaleur sera important. Les situations extrêmement défavorables (températures négatives) sont relativement rares au cours d'une année. Cependant, le système de chauffage est dimensionné pour pouvoir répondre à ces besoins.


Afin d'optimiser les performances d'une pompe à chaleur ainsi que les coûts notamment pour les installations sur sondes géothermiques, il est préférable de ne pas la surdimensionner par rapport aux besoins. Par ailleurs, lorsque les émetteurs ne sont pas adaptés à la basse température, la pompe à chaleur peut avoir des difficultés à atteindre les températures d'eau nécessaire lorsque la température extérieure baisse de manière importante. Aussi, il peut être judicieux de sous-dimensionner la pompe à chaleur tout en utilisant un appoint en cas de besoins plus important.

Dans le cas d'un projet sur sondes géothermiques avec chaussée thermoactive, il a été considéré dans cette étude un dimensionnement des pompes à chaleur à 60% de la puissance nécessaire à la température de base. Une chaudière gaz prendra la relève lorsque la puissance appelée sera plus importante. Une analyse plus fine de la loi d'eau sur le site et une simulation thermique dynamique réalisée par un bureau d'études permettront de définir au mieux le point de bivalence et la puissance adaptée pour la pompe à chaleur.

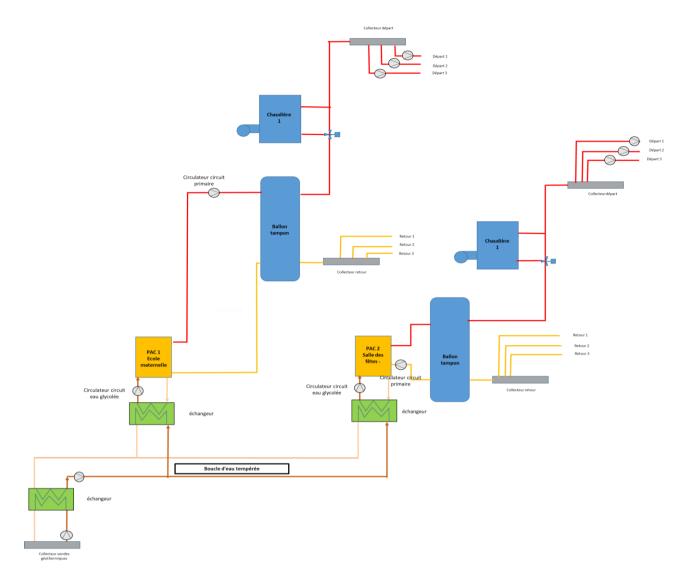
Par ailleurs, afin d'optimiser la performance des pompes à chaleur sur chacun des bâtiments et en prévision de travaux de rénovation ultérieurs pouvant aller à des rythmes différents, il a été pris en compte la mise en place de deux systèmes indépendants pour l'école et le complexe mairie - salle des fêtes. Chacun des systèmes sera composé d'une pompe à chaleur et d'une chaudière gaz à condensation en relève.

Les pompes à chaleur seront reliées au captage géothermique par une boucle d'eau tempérée. Les chaudières seront dimensionnées à 120% des déperditions.

Production de chauffage :			
Bâtiments	Mairie-Salle des fêtes	Ecole maternelle	
Puissance PAC géothermique	40 kW	40 kW	
Puissance chaudière gaz	60 kW	60 kW	

Courbe monotone type de chauffage géothermique sans eau chaude sanitaire avec PAC dimensionnée à 60% des dépenditions

6.3 Schéma hydraulique


Il est proposé un système de chauffage sur boucle d'eau tempérée. Cela permet d'individualiser les systèmes de chauffage pour chaque bâtiment et de programmer la rénovation des lieux par phase sans avoir à surdimensionner les pompes à chaleur.

Chaque chaufferie (école et mairie - salle des fêtes) possèdera une sous-station comprenant:

- un échangeur avec la boucle d'eau tempérée géothermique (BETG)
- pompes à chaleur eau glycolée/eau de puissance 40 kW
- ballon tampon en découplage et kit hydraulique
- une chaudière en relève de 60 kW

Un local pompe de circulation assurant la circulation de la BETG est nécessaire et pourra se situer au niveau de la chaufferie de la salle des fêtes.

La régulation au niveau de chaque bâtiment se fera en respectant la loi d'eau en fonction de la température extérieure. D'autre part, une régulation mutualisée devra permettre d'adopter le débit adapté au niveau de la BETG.

Exemple de schéma de principe

6.4 Géothermie sur sondes : dimensionnement et caractéristiques énergétiques

Nous considérons les hypothèses suivantes afin de dimensionner le système :

Hypothèses:

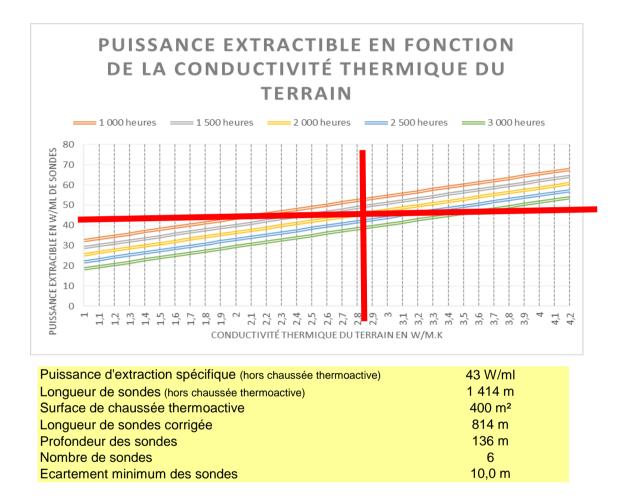
COP PAC géo production chauffage	4,2
Conductivité	2,8 W/mK
Delta T entre départ et retour sondes	3 K

Caractéristiques énergétiques :

Production de chaleur (chauffage) :

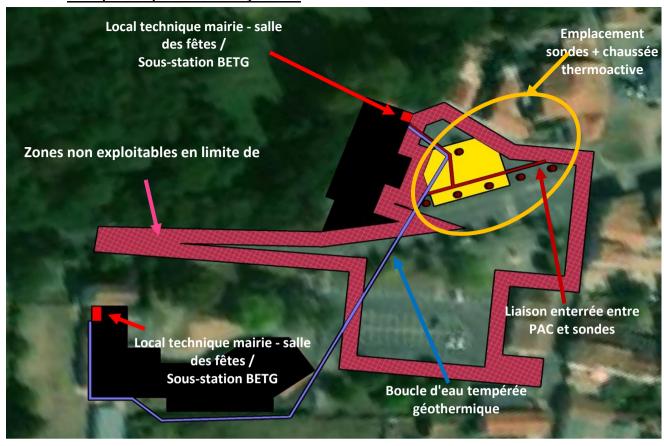
Puissance calorifique maximale du projet (PAC)	80 kW
Puissance calorifique de la relève gaz	120 kW
Chaleur à produire	200 564 kWh
dont : Chaleur produite par la relève	20 056 kWh
Chaleur produite par la PAC	180 507 kWh

Consommation énergétique :	
Consommation énergie	64 759 kWh
dont consommation PAC	42 978 kWh
consommation auxiliaires	669 kWh
consommation relève (gaz)	21 112 kWh


Energie extraite du sous-sol :	
Puissance frigorifique à extraire	61 kW
Besoin annuel frigorifique (source froide)	137 529 kWh
Nombre d'heures de fonctionnement des sondes	2 263 h
Nombre d'heures de fonctionnement des sondes	2 263 h

Dimensionnement du champ de sondes :

La puissance spécifique récupérable dans le sol pour alimenter une pompe à chaleur géothermique dépend de trois paramètres principaux :


- la conductivité thermique
- les heures d'utilisation à puissance nominale
- la surface de chaussée thermoactive disponible et connectée au champ de sondes

Le dimensionnement de la pompe à chaleur permettra de dimensionner la profondeur des sondes ainsi que leur nombre.

Il est envisagé 6 sondes géothermiques de 130m associées à une chaussée thermoactive de 400m² pour couvrir les besoins frigorifiques du projet. En première approche, on peut considérer que la chaussée thermoactive permet de réduire le linéaire de sondes de 1,5ml/m² de chaussée thermoactive. L'emplacement des sondes devra être éloigné d'au moins 5m de tout arbre, à 3m des fondations des bâtiments existants et à 1,5m des réseaux. Elles devront espacées d'un minimum de 10m. On notera que ce dimensionnement se base sur l'utilisation moyenne du site. Une augmentation des besoins de chauffage entraînerait une augmentation du temps de fonctionnement et un linéaire de sondes géothermiques plus important.

Exemple d'implantation du système :

7 - Bilans thermiques

7.1 Géothermie sur sondes verticales (échangeurs fermés)

		Solution géothermique (PAC + appoint éventuel)				Solution référence		
	Besoins	Consommations		Production		Consommations		
	utiles	PAC*	Auxiliaires**	Appoint	PAC ou geocooling	Appoint	Combustible	Electricité
Chauffage	171 958 kWh	42 978 kWh	669 kWh	21 112 kWh	180 507 kWh	20 056 kWh	211 120 kWh	0 kWh
ECS	NC	NC	NC	NC	NC	NC	NC	NC
Froid***	NC	NC	NC	NC	NC	NC	NC	NC
Total	171 958 kWh	42 978 kWh	669 kWh	21 112 kWh	180 507 kWh	20 056 kWh	211 120 kWh	0 kWh

^{*} Consommation électrique du compresseur de la PAC

^{**} Consommation électrique des auxiliaires : pompes de forage, pompes de circulation (hors pompes côté distribution) ;

^{***}Froid : En cas de rafraîchissement direct (geocooling ou freecooling), l'indiquer clairement

8 - Bilan économique

8.1 Solution de référence

8.1.1 Investissement

Montant investissement HT	50 400 €	Amortissement
2 chaudières gaz à condensation de 65 kW	30 000 €	15 ans
Equipement et pose	12 000 €	15 ans
Ingénierie	8 400 €	15 ans
TVA (20%)	10 080 €	
Montant investissement TTC	60 480 €	

FCTVA 8 268 €

Charges d'investissement 52 212 €

8.1.2 Charges d'exploitation

Maintenance annuelle720 €TTCPart variable du coût de l'énergie :Gaz naturel0,1020 €/kWhConsommation d'énergie21 534 €TTCTotal charges d'exploitation22 254 €

8.3 Géothermie sur sondes verticales (échangeurs fermés)

8.2.1 Investissement

Montant investissement HT	388 416 €	Amortissement
6 SGV de 136 m	68 500 €	30 ans
Réseau sondes horizontal	9 750 €	30 ans
Réseau BETG	30 750 €	30 ans
Local technique	24 000 €	30 ans
Système Power Road	72 000 €	30 ans
Pompe à chaleur géo	44 699 €	15 ans
Sous-stations BETG	20 000 €	15 ans
Chaudières gaz à condensation	30 000 €	15 ans
Equipement et pose	25 880 €	15 ans
Ingénierie	62 837 €	15 ans
TVA (20%)	77 683 €	
Montant investissement TTC	466 099 €	
Aides financières (Fonds chaleur Ademe)	155 029 €	
dont : Fonds chaleur études		17 500 €
Fonds chaleur travaux		194 949 €
FCTVA	64 090 €	
Charges d'investissement	246 980 €	

8.2.2 Charges d'exploitation annuelles (la première année)

Maintenance annuelle		1 200 €TTC
Part variable du coût de l'énergie :	Gaz naturel	0,1020 €/kWh
Part variable du coût de l'énergie :	Electricité	0,2000 €/kWh
Consommation d'énergie		10 919 €TTC
Surcoût abonnement annuel électricité		265 €TTC
Total charges d'exploitation		12 384 €

8.2.3 Bilan économique par rapport à la solution de référence

Economie annuelle de fonctionnement (1 ère année)	9 871 €
Surcoût de l'installation géothermique	194 767 €

Résultats actualisés¹

Economie de charges actualisée sur 15 ans	215 343 €
Surcoût de l'installation avec charges financières	217 835 €
Economie globale réalisée sur 15 ans	-2 492 €
Economie de charges actualisée sur 30 ans	669 660 €
Surcoût de l'installation avec charges financières	526 305 €
Economie globale réalisée sur 30 ans	143 355 €

¹ prend en compte le surcoût de l'installation, les intérêts d'emprunt, le coût des charges de maintenance actualisé, les économies actualisées réalisées sur la facture d'électricité, le remplacement de la Pac et de la solution de référence après 15 ans.

Indexation des charges de maintenance	1,50%
Indexation du coût de l'énergie	5,00%
Taux d'intérêt emprunt	4,00%

8.4 Analyse des résultats économiques

Le projet de géothermie présente un intérêt économique sur le long terme en considérant un besoin de financement à solliciter auprès des financeurs. Les coûts indiqués sur les forages devront être confirmés par l'étude de faisabilité à mener par un BE hydrogéologique et peuvent notamment varier en fonction de la nature du terrain. De ce point de vue, l'étude de faisabilité devra permettre une approche complémentaire pour le choix de la solution. Les études de faisabilité sont subventionnées dans le cadre du fonds chaleur de l'Ademe.

Prévisionnel de fonctionnement

Solution de référence

Investissement initial

Coût d'investissement	60 480 €TTC
FCTVA	8 268 €
Montant emprunté à taux courant	52 212 €
Durée de l'amortissement	15 ans

Taux d'emprunt	4,00%
Nombre d'annuités	15
Annuités	4 696 €
Intérêts annuels	1 215 €

Hypothèses d'indexation

Indexation du coût de l'énergie	5,0 %/an
Indexation des charges annuelles	1,5 %/an

Renouvellement système de chauffage après 15 ans

Coût d'investissement	50 400 €TTC
FCTVA	8 268 €
Montant emprunté à taux courant	42 132 €
Durée de l'amortissement	15 ans

Taux d'emprunt	4,00%
Nombre d'annuités	15
Annuités	3 789 €
Intérêts annuels	981 €

Compte prévisionnel de fonctionnement

	Année 1	Année 2	Année 3	Année 4	Année 5	Année 6	Année 7	Année 8	Année 9	Année 10	Année 11	Année 12	Année 13	Année 14	Année 15	Année 16	Année 17	Année 18	Année 19	Année 20	Année 21	Année 22	Année 23	Année 24	Année 25	Année 26	Année 27	Année 28	Année 29	Année 30
Amortissement (€)	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	3 481	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809	2 809
Intérêts (€)	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	1 215	981	981	981	981	981	981	981	981	981	981	981	981	981	981	981
Annuité (€)	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	4 696	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789	3 789

ENERGIE FOSSILE																														
Consommation énergie fossile (kWh)	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120	211 120
Coût de l'énergie fossile (€TTC/kWh)	0,1020	0,1071	0,1125	0,1181	0,1240	0,1302	0,1367	0,1435	0,1507	0,1582	0,1661	0,1745	0,1832	0,1923	0,2020	0,2121	0,2227	0,2338	0,2455	0,2577	0,2706	0,2842	0,2984	0,3133	0,3290	0,3454	0,3627	0,3808	0,3999	0,4198
Coûts de conso annuelle d'énergie fossile (€TTC)	21 534	22 611	23 741	24 929	26 175	27 484	28 858	30 301	31 816	33 407	35 077	36 831	38 672	40 606	42 636	44 768	47 007	49 357	51 825	54 416	57 137	59 994	62 993	66 143	69 450	72 923	76 569	80 397	84 417	88 638
MAINTENANCE																														
Contrat de maintenance (€TTC)	720	731	742	753	764	776	787	799	811	823	836	848	861	874	887	900	914	927	941	955	970	984	999	1 014	1 029	1 045	1 060	1 076	1 092	1 109
Charges d'exploitation (€TTC)	22 254	23 342	24 483	25 681	26 939	28 259	29 645	31 100	32 627	34 230	35 913	37 679	39 533	41 480	43 523	45 668	47 920	50 284	52 766	55 371	58 106	60 978	63 992	67 157	70 479	73 967	77 629	81 473	85 509	89 747
Dépenses annuelles	26 950	28 038	29 179	30 377	31 635	32 955	34 341	35 796	37 323	38 926	40 609	42 375	44 229	46 176	48 219	49 458	51 710	54 074	56 555	59 161	61 896	64 767	67 782	70 946	74 269	77 757	81 418	85 263	89 299	93 536
Dépenses annuelles cumulées	26 950	54 988	84 167	114 545	146 180	179 135	213 477	249 273	286 596	325 522	366 130	408 505	452 734	498 910	547 129	596 587	648 297	702 370	758 926	818 086	879 982	944 750	1 012 531	1 083 478	1 157 746	1 235 503	1 316 921	1 402 184	1 491 483	1 585 019

Géothermie sur sondes verticales (échangeurs fermés)

Investissement initial

Coût d'investissement	466 099 €TTC
Fonds chaleur	155 029 €
Durée amortissement subvention	15 ans
FCTVA	64 090 €
Montant emprunté à taux courant	402 009 €

Montant amorti sur 30 ans	205 646 €
Taux d'emprunt	4,00%
Annuités	11 893 €
Intérêts annuels	5 038 €

Montant amorti sur 15 ans	196 363 €
Taux d'emprunt	4,00%
Annuités	17 661 €
Intérêts annuels	4 570 €

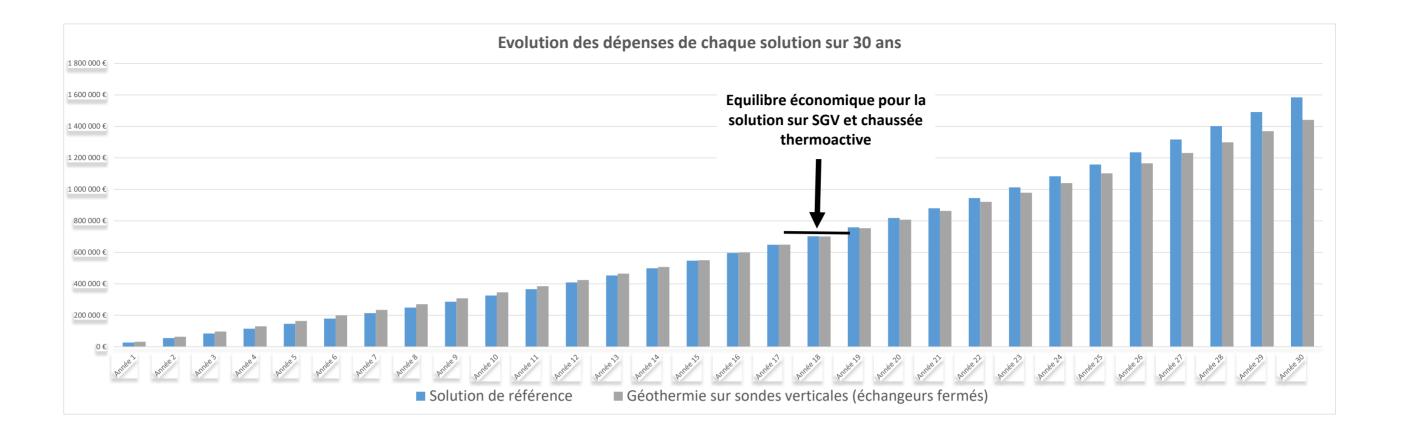
Hypothèses d'indexation

ndexation du coût de l'énergie	5,0 %/an
ndexation des charges annuelles	1,5 %/an

Renouvellement PAC après 15 ans

Coût d'investissement	144 695 €TTC
FCTVA	23 736 €
Montant emprunté à taux courant	120 959 €
Durée de l'amortissement	15 ans

Taux d'emprunt	4,00%
Nombre d'annuités	15
Annuités	10 879 €
Intérêts annuels	2 815 €


Compte prévisionnel de fonctionnement

	Année 1	Année 2	Année 3	Année 4	Année 5	Année 6	Année 7	Année 8	Année 9	Année 10	Année 11	Année 12	Année 13	Année 14	Année 15	Année 16	Année 17	Année 18	Année 19	Année 20	Année 21	Année 22	Année 23	Année 24	Année 25	Année 26	Année 27	Année 28	Année 29	Année 30
Amortissement investissement (€)	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	19 946	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501	16 501
Intérêts (€)	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	9 608	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853	7 853
Annuité (€)	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	29 554	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354	24 354
Amortissement subvention	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	-10 335	n	0	0	0	0	0	0	Λ	n	0	0	0	0	0	0

ENERGIE FOSSILE																														
Consommation énergie fossile (kWh)	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112	21 112
Coût de l'énergie fossile (€TTC/kWh)	0,1020	0,1071	0,1125	0,1181	0,1240	0,1302	0,1367	0,1435	0,1507	0,1582	0,1661	0,1745	0,1832	0,1923	0,2020	0,2121	0,2227	0,2338	0,2455	0,2577	0,2706	0,2842	0,2984	0,3133	0,3290	0,3454	0,3627	0,3808	0,3999	0,4198
Coûts de conso annuelle d'énergie fossile (€TTC)	2 153	2 261	2 374	2 493	2 617	2 748	2 886	3 030	3 182	3 341	3 508	3 683	3 867	4 061	4 264	4 477	4 701	4 936	5 182	5 442	5 714	5 999	6 299	6 614	6 945	7 292	7 657	8 040	8 442	8 864
ELECTRICITE																														
Consommation d'électricité (kWh)	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828	43 828
Coût de l'électricité (€TTC/kWh)	0,2000	0,2100	0,2205	0,2315	0,2431	0,2553	0,2680	0,2814	0,2955	0,3103	0,3258	0,3421	0,3592	0,3771	0,3960	0,4158	0,4366	0,4584	0,4813	0,5054	0,5307	0,5572	0,5851	0,6143	0,6450	0,6773	0,7111	0,7467	0,7840	0,8232
Surpuissance abonnement électrique nécessaire (kVA)	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19
Composante annuelle soutirage fixe (€TTC/kVA)	13,93	14,63	15,36	16,13	16,93	17,78	18,67	19,60	20,58	21,61	22,69	23,83	25,02	26,27	27,58	28,96	30,41	31,93	33,53	35,21	36,97	38,81	40,75	42,79	44,93	47,18	49,54	52,01	54,62	57,35
Surcoût soutirage fixe (€TTC)	265	278	292	306	322	338	355	372	391	411	431	453	475	499	524	550	578	607	637	669	702	737	774	813	853	896	941	988	1 037	1 089
Coûts de consommation annuelle d'électricité (€TTC)	9 030	9 482	9 956	10 454	10 976	11 525	12 101	12 706	13 342	14 009	14 709	15 445	16 217	17 028	17 879	18 773	19 712	20 698	21 732	22 819	23 960	25 158	26 416	27 737	29 123	30 580	32 109	33 714	35 400	37 170
MAINTENANCE																														$\overline{}$
Contrat de maintenance (€TTC)	1 200	1 218	1 236	1 255	1 274	1 293	1 312	1 332	1 352	1 372	1 393	1 414	1 435	1 456	1 478	1 500	1 523	1 546	1 569	1 592	1 616	1 640	1 665	1 690	1 715	1 741	1 767	1 794	1 821	1 848
Charges d'exploitation (€TTC)	12 384	12 961	13 566	14 201	14 867	15 566	16 299	17 068	17 875	18 722	19 610	20 541	21 519	22 545	23 621	24 750	25 935	27 179	28 484	29 853	31 290	32 798	34 380	36 041	37 784	39 613	41 533	43 548	45 662	47 882
Dépenses annuelles	31 602	32 179	32 785	33 420	34 086	34 785	35 518	36 287	37 094	37 940	38 828	39 760	40 737	41 763	42 839	49 104	50 289	51 533	52 838	54 207	55 644	57 152	58 734	60 395	62 138	63 967	65 887	67 902	70 016	72 236
Dépenses annuelles cumulées	31 602	63 781	96 566	129 986	164 071	198 856	234 374	270 660	307 754	345 694	384 522	424 282	465 019	506 782	549 622	598 726	649 015	700 548	753 386	807 593	863 237	920 389	979 123	1 039 518	1 101 656	1 165 623	1 231 510	1 299 412	1 369 428	1 441 664
Economie annuelle par rapport à référence	-4 652	-4 141	-3 605	-3 042	-2 451	-1 829	-1 176	-491	229	986	1 781	2 615	3 492	4 413	5 380	353	1 420	2 541	3 718	4 954	6 252	7 615	9 047	10 551	12 131	13 790	15 532	17 361	19 283	21 300
Economie cumulée	-4 652	-8 793	-12 399	-15 441	-17 891	-19 721	-20 897	-21 388	-21 158	-20 172	-18 392	-15 777	-12 285	-7 872	-2 492	-2 139	-719	1 822	5 540	10 493	16 745	24 361	33 408	43 959	56 090	69 880	85 411	102 772	122 055	143 355

Point d'équilibre économique

Comparaison des solutions

Annexe 1 - Le contexte du marché géothermique

Contexte national

La stratégie de développement de la filière géothermie est intégrée à une politique nationale de maîtrise de l'énergie et de développement des énergies renouvelables avec un double objectif de réduction des émissions de gaz à effet de serre et de développement économique d'un nouveau secteur d'activité.

Les objectifs nationaux en la matière sont inscrits dans la loi du 3 août 2009 de programmation relative à la mise en œuvre du Grenelle de l'environnement (Grenelle I) et dans la loi du 17 août 2015 relative à la transition énergétique pour la croissance verte :

Quelques objectifs des **Programmations pluriannuelles de l'énergie** (PPE), émis par le Ministère de la transition écologique et solidaire **pour 2023 et 2028** :

Energies renouvelables électriques : Augmentation de plus 50% de la capacité installée en 2023 et de 100% en

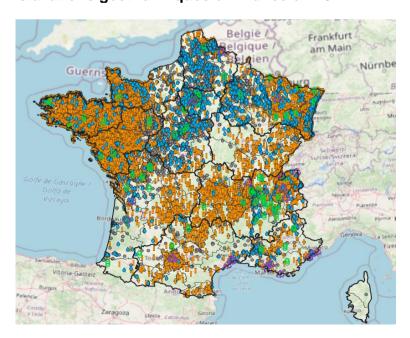
2028 par rapport à 2017 (soit 73,5 GW en 2023 et entre 101 et 113 GW en

2018)

Energies renouvelables chaleur : Augmentation de la consommation de 25% en 2023 et de 40 à 60% en

2028 par rapport à 2017 (soit 196 TWh en 2023 et entre 218 et 247 TWh

en 2028)


Consommation finale d'énergie : Baisse de 7,6% en 2023 et 16,5% en 2028 par rapport à 2012

Consommation primaire des énergies fossiles : Baisse de 22% en 2023 et de 35% en 2028 par rapport à 2012

Objectifs de consommation finale des filières de chaleur renouvelable

	2017	2023	2028 bas	2028 haut
Biomasse	120	145	157	169
PAC aérothermiques	23,5	35	39	45
PAC géothermiques	3,14	4,6	5	7
Géothermie profonde	2	3	4	5,2
Solaire thermique	1,18	1,75	1,85	2,5
Biogaz (dont biogaz injecté)	4	7	12	18
TOTAL	154	196	219	247

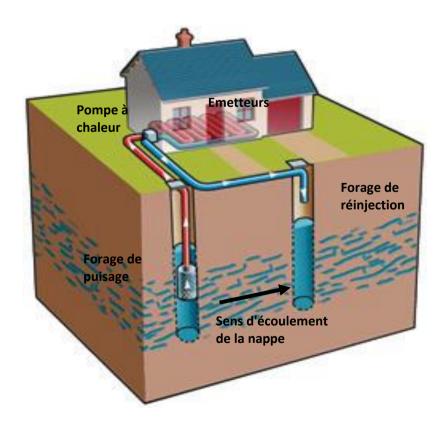
Installations géothermiques en France en 2022

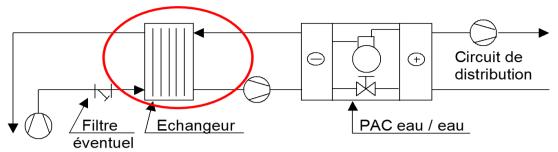
Source: AFPG

Annexe 2 - Aspects techniques

1. Fonctionnement d'une installation géothermique de minime importance :

Un système géothermique de minime importance est un système permettant de capter la chaleur du sol et de la transférer vers le bâtiment à chauffer par l'intermédiaire d'une pompe à chaleur tout au long de la saison de chauffe. En période estivale, le cycle de la pompe à chaleur peut être inversé afin de raffraichir le bâtiment. Le raffraichissement estival peut également être généré par un système de geo-cooling constitué d'un simple échangeur thermique (sans passer par la pompe à chaleur) entre des fluides caloporteurs circulant dans le sol et dans le bâtiment.


Les deux principaux systèmes géothermiques de minime importance sont:

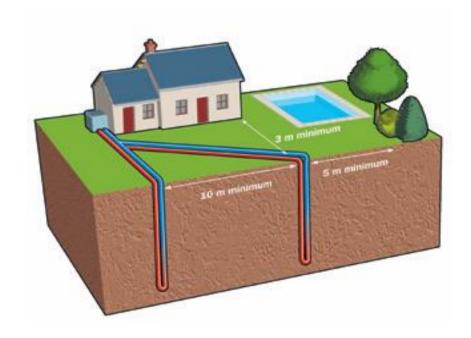

- les systèmes géothermiques sur nappe
- les systèmes géothermiques sur sondes géothermiques verticales (SGV)

2. Géothermie sur nappe

Le système est principalement composé des éléments suivants :

- d'un double forage (doublet) permettant le puisage et le rejet de l'eau souterraine dans la même nappe
- d'une pompe à chaleur
- d'émetteurs de chaleur (plancher chauffant, radiateurs basse température,...)
- d'accessoires hydrauliques assurant le bon fonctionnement du système (ballon tampon, circulateurs, vase d'expansion, collecteurs, pompe, échangeur...).

Rejet Puisage


Un système géothermique sur nappe est considéré de minime importance s'il respecte les conditions suivantes:

- > profondeur d'installation supérieure à 10 m et jusqu'à 200 m
- > puissance soutirée du sous-sol inférieure à 500 kW
- > localisation en zone verte ou orange sur les cartes des zones d'aléas du sous-sol
- > température de l'eau puisée en sous-sol inférieure à 25 °C
- > prélèvement et une réinjection dans le même aquifère
- > aucun volume prélevé pour un usage autre (arrosage, consommation, agriculture, industrie...)
- > débit pompé inférieur à 80m3/h

3. Géothermie sur sondes géothermiques verticales

Le système est principalement composé des éléments suivants :

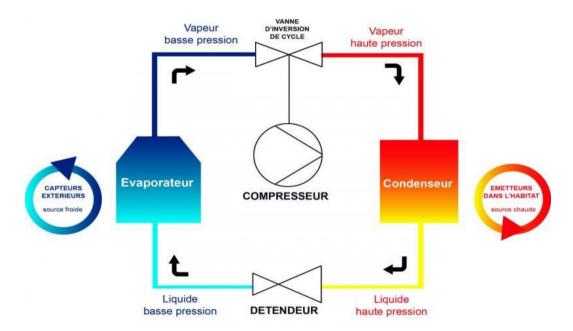
- d'un ou plusieurs forages de profondeur maximale de 200 m dans lesquels circule un fluide caloporteur (eau glycolée)
- d'une pompe à chaleur
- d'émetteurs de chaleur (plancher chauffant, radiateurs basse température,...)
- d'accessoires hydrauliques assurant le bon fonctionnement du système (ballon tampon, circulateurs, vase d'expansion, collecteurs, pompe, échangeur...).

Un système géothermique sur SGV est considéré de minime importance s'il respecte les conditions suivantes:

- > profondeur d'installation supérieure à 10 m et jusqu'à 200 m
- > puissance soutirée du sous-sol inférieure à 500 kW
- > localisation en zone verte ou orange sur les cartes des zones d'aléas du sous-sol

4. Fonctionnement d'une pompe à chaleur :

La pompe à chaleur géothermique permet de récupérer les calories du sol pour la réinjecter dans le bâtiment. La pompe à chaleur est composée de quatre composants à travers lesquels circule un fluide frigorigène:


- un évaporateur
- un compresseur
- un condenseur
- un détendeur

L'évaporateur est un échangeur thermique dans lequel le fluide frigorigène récupèrera la chaleur provenant du sous-sol

Le passage du fluide frigorigène dans **le compresseur** augmentera la pression et la température du fluide. La phase de compression nécessite une consommation d'électricité.

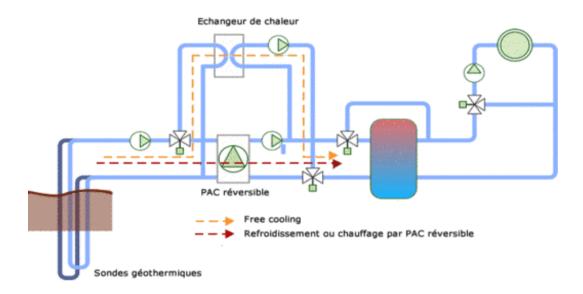
Le condenseur est un échangeur thermique dans lequel l'eau du circuit de chauffage récupèrera la chaleur du fluide frigorigène.

Enfin, le détendeur baissera la pression et la température du fluide frigorigène qui reviendra à son état initial.

L'intérêt de la pompe à chaleur est qu'elle permet de restituer au bâtiment une énergie plus importante que la consommation électrique du compresseur. Le **coefficient de performance d'une pompe à chaleur (COP)** est le rapport entre l'énergie restituée au bâtiment et l'énergie électrique consommée.

Afin d'optimiser le COP, il est préférable :

- d'isoler le bâtiment
- de fonctionner avec des **émetteurs de chaleur basse température** (plancher chauffant ou radiateurs basse température)


Remarque:

Sur beaucoup de PAC, il est possible d'inverser le cycle du fluide frigorigène. L'évaporateur prend alors la fonction du condenseur et le condenseur celle de l'évaporateur. Cela permet de générer un raffraichissement du bâtiment.

5. Principe de fonctionnement du geocooling

Le principe du geocooling est de permettre en raffraichissement de quelques degrés dans le bâtiment sans l'utilisation de la pompe à chaleur. Ce type de raffraichissement est peu énergivore.

L'eau circulant dans le circuit de "chauffage" du bâtiment est directement refroidie par l'eau glycolée circulant sous terre dans les sondes géothermiques.

5. La boucle d'eau tempérée géothermique (BETG)


La boucle d'eau tempérée à énergie géothermique dite « BETEG » est assimilée à un réseau de chaleur.

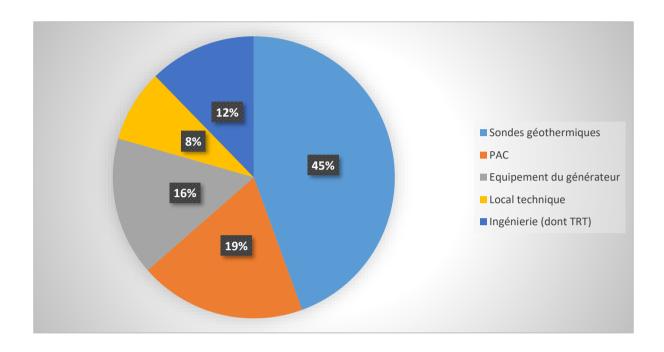
Elle est constituée :

- D'un dispositif de captage (ressource géothermique),
- D'un dispositif de mutualisation (boucle d'eau tempérée),
- D'un dispositif de production (Thermopompes ou PACs Géothermiques eau/eau),
- D'un dispositif de régulation.

L'ensemble de ces 4 dispositifs représente le système énergétique constituant la boucle d'eau tempérée à énergie géothermique : BETEG.

La BETEG est un dispositif innovant basé sur une distribution de l'énergie thermique via le principe d'un réseau d'eau tempérée unique.

Elle se compose d'un réseau d'eau tempérée alimenté par une ou plusieurs ressources géothermiques couplées à des productions décentralisées.


Elle repose sur une distribution à basse pression d'une eau à très basse température (généralement inférieure à 30°C) ce qui caractérise la notion d'eau tempérée distribuée dans le réseau. Ce réseau d'eau à très basse température alimente des sous-stations équipées de thermopompes eau/eau (PAC Géothermique). Ces équipements de production décentralisée (PACs Géothermiques) permettent une production de chaud, pour le chauffage et/ou l'eau chaude sanitaire (ECS), et de froid par bâtiment ou îlots de bâtiments. Le montage en « thermofrigopompe » de ces pompes à chaleur permet de répondre simultanément aux besoins de chaud et de froid en aval de la sous-station.

La BETEG peut être définie à partir du moment où est mise en oeuvre une solution énergétique alimentant :

- A minima, deux bâtiments de typologies différentes (par exemple logement et tertiaire) ou bien identiques,
- Au plus, un quartier (bâtiments ou îlots) à l'échelle d'une ZAC.

Annexe 3 - Aspects économiques

Exemple de répartition des coûts d'investissement d'une installation

Annexe 4 - Règlement aides financières

Les porteurs de projets géothermiques sur sondes géothermiques verticales ou sur nappe peuvent solliciter des aides financières auprès de l'Ademe dans le cadre du Fonds Chaleur.

1. Etude de faisabilité

Les études de faisabilité bénéficient d'un financement jusqu'à 70% par l'Ademe. Pour cela, elles doivent :

- Respecter le cahier des charges Ademe
- Associer un BE fluides et un BE hydrogéologique dont au moins l'un des deux a une qualification OPQIBI pour la mise en œuvre d'installation de géothermie (10.07 ou 20.13)

2. Aides à l'investissement

Conditions générales :

- Respecter la règlementation thermique en vigueur sur les bâtiments
- Mettre en place une instrumentalisation assurant le suivi de fonctionnement des installations
- Souscrire un contrat d'entretien

Conditions spécifiques sur nappe :

- Production minimum de 25MWh ENR¹/an
- Nombre d'heures équivalentes de fonctionnement à puissance nominale de la PAC > 1000h/an recommandé
- COP machine > 4,5 dans les conditions d'essais au régime de température 10/7°C 30/35°C

Conditions spécifiques sur SGV :

- Production minimum de 25MWh ENR/an
- Nombre d'heures équivalentes de fonctionnement à puissance nominale de la PAC > 1000h/an recommandé
- COP machine > 4 dans les conditions d'essais au régime de température 0/-3°C 30/35°C

Conditions spécifiques geocooling :

- Production minimum de 25MWh ENR/an
- Coefficient de performance SEER > 20

Montant des aides (production < 500 MWh ENR/an)

Technologie	Aide en €/MWh EnR/an (sur 20 ans)						
Pompe à chaleur sur eau de nappe	25 €/MWh EnR						
Pompe à chaleur sur sondes géothermiques verticales	50 €/MWh EnR						
Géocooling	13 €/MWh EnR						